Gambarlahgrafik fungsi kuadrat y = x² - 4x - 5. Pembahasan: grafik fungsi kuadrat nilai a nya positif, berarti grafik fungsi terbuka keatas, untuk memudahkan mengingat jika a nya positif tersenyum ∪, jika nilai a nya negatif cemberut ∩. grafik fungsi kuadrat memotong sumbu x → y = 0. y = x² - 4x - 5. 0 = x² - 4x - 5 → faktorkan. Kelas 9 SMPFUNGSI KUADRATFungsi kuadrat dengan tabel, grafik, dan persamaanFungsi kuadrat dengan tabel, grafik, dan persamaanFUNGSI KUADRATALJABARMatematikaRekomendasi video solusi lainnya0353Diketahui garis dengan persamaan x + 4y + 3 = 0 dan 2x - ...0247Grafik dari y = 4x - x^2 paling tepat digambar sebagai...0404Jika f adalah fungsi kuadrat yang grafiknya melalui titik...0349Grafik fungsi kuadrat yang memotong sumbu X di titik -4,...Teks videodi sini ada pertanyaan yaitu Gambarlah grafik fungsi kuadrat y = min x kuadrat + 2 x + 8 untuk menjawab pertanyaan tersebut maka kita akan mencari dulu titik potong terhadap sumbu x dan sumbu y untuk yang pertama kita akan mencari titik potong terhadap sumbu x nya maka artinya nilainya sama dengan pada fungsi kuadrat tersebut karena isinya adalah 0, maka di sini menjadi 0 = min x kuadrat + 2 x + 8 selanjutnya kita akan mencari titik potong terhadap sumbu x nya dengan cara pemfaktoran faktoran maka di sini kita akan mengubah min x kuadrat supaya menjadi positif sehingga harus dikalikan dengan 1 maka 0 = x kuadrat min 2 x min 8 di mana saat kita faktorkan maka akan menjadi X min 4 dikalikan dengan x2 sehingga nilai x nya sama dengan 4 atau nilai x y = negatif 2 maka titik potong terhadap sumbu x nya adalah 4 koma Min 2,0 selanjutnya kita akan mencari titik potong terhadap sumbu y maka artinya nilai x nya = 0 dimana y = x + 2 x + 8 dengan x maka y = Min 0 kuadrat + 2 x 0 + 8 maka nilainya sama dengan titik potong terhadap sumbu y adalah 0,8 lanjutnya maka di sini kita akan mencari puncak dari grafik tersebut didapatkan dari min b per 2 koma negatif dari diskriminasi itu b kuadrat min 4 x a * c dibagi dengan 4 A maka disini untuk fungsi kuadrat tersebut nilai a-nya adalah min 1adalah 2 dan nilainya adalah 8 sehingga negatif dari B yaitu negatif 2 dibagi dengan 2 kali a nya adalah negatif 1 koma negatif 2 kuadrat adalah 4 dikurangi dengan 4 kali a nya adalah min 1 dikalikan dengan c-nya adalah 8 kemudian dibagi dengan 4 kali a nya adalah min 1 sehingga disini menjadi negatif 2 dibagi dengan negatif 2 koma negatif dari 4 lalu ditambahkan dengan 32 dibagi dengan negatif 4 maka disini menjadi negatif 2 per 2 yaitu 1 kemudian koma negatif negatif maka positif sehingga menjadi 36 dibagi dengan 4 maka titik puncak pada grafik fungsi kuadrat tersebut itu ada1,9 langkah selanjutnya titik-titik tersebut akan kita beri nama yaitu titik a. Titik B titik c dan titik D selanjutnya titik ABC akan kita Gambarkan dalam sebuah diagram kartesius Sehingga ini adalah titik-titiknya maka untuk membentuk suatu grafik kita akan menggabungkan titik-titik tersebut sehingga terbentuklah sebuah grafik parabola yang terbuka ke bawah dengan titik puncaknya adalah 1,9 sampai jumpa di Pertanyaan selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul Gambarlahgrafik fungsi kuadrat berikut: y = -x^2 + 2x + 8. Fungsi kuadrat dengan tabel, grafik, dan persamaan; FUNGSI KUADRAT; ALJABAR; Matematika; Share. Cek video lainnya. Ingat persamaan umum fungsi kuadrat adalah 1. Menentukan titik potong terhadap sumbu . Pertama liat diskriminan dari fungsi kuadrat karena maka fungsi kuadrat diatas tidak memotong sumbu x 2. Menentukan titik potong terhadap sumbu y. jadi titik potong terhadap sumbu y adalah . 3. Menentukan sumbu simetri 4. Menentukan nilai minimum 5. Menentukan koordinat titik balik koordinat titik balik Dengan demikian, sketsa grafik fungsi adalah sebagai berikut Gambarlahgrafik fungsi kuadrat y x-4x-5 Jawaban. Berikut kkatri jawab di dalm blog m4thguruinfo. Want to read all 11 pages. Titik potong sumbu xy0 y x. Untuk y x n. Gambarlah grafik fungsi berikut ini a y 6x25x7 b 7×2-3×2 berikut itu adalah hasil QnA m4tguru di wa. Koordinat titik potong kedua grafik tersebut adalah 2 1.
Pengertian Fungsi Kuadrat Fungsi kuadrat merupakan fungsi dengan pangkat terbesar dari variabel bebas misalnya variabel x adalah dua dan bentuk umumnya f x = y = ax2 + bx + c. Bentuk grafik fungsi kuadrat menyerupai parabola. Contoh grafik fungsi kuadrat yaitu Menggambar Grafik Fungsi Kuadrat Langkah-langkah menggambar grafik fungsi kuadrat adalah sebagai berikut. Tentukan titik potong terhadap sumbu x dengan syarat y = 0, sehingga diperoleh koordinat x1 , 0 dan x2 , 0. Tentukan titik potong terhadap sumbu y dengan syarat x = 0, sehingga diperoleh koordinat 0, y1. Tentukan titik balik atau titik puncak xp,yp=−b2a,−b2−4ac4a. Gambarkan dan hubungkan titik-titik yang diperoleh pada bidang Cartesius. Contoh 1 Gambarkan grafik fungsi y = x2 – 1. Penyelesaian Diketahui fungsi y = x2 – 1 dengan a = 1, b = 0, c = -1. Titik potong sumbu x dengan syarat y = 0. y = x2 – 1⇔ 0 = x2 – 1⇔ x + 1 x - 1 = 0⇔ x = -1 atau x = 1 ∴ Titik potong sumbu x adalah -1, 0 dan 1, 0. Titik potong sumbu y dengan syarat x = 0. y = x2 – 1⇔ y = 0 – 1⇔ y = -1 ∴ Titik potong sumbu y adalah 0, -1. Titik balik xp=−b2a=−021=0yp=−b2−4ac4a=−02−41−141=−44=−1 ∴ Titik baliknya adalah 0, -1 Ini berarti, titik baliknya sama dengan titik potong fungsi dengan sumbu y. Hubungkan titik-titik yang diperoleh pada bidang Cartesius, sehingga terbentuk grafik y = x2 – 1 seperti di bawah ini. Contoh 2 Gambarkan grafik fungsi y = x2 – 2x - 8. Penyelesaian Diketahui fungsi y = x2 – 2x - 8 dengan a = 1, b = -2, dan c = -8. Titik potong sumbu x dengan syarat y = 0. y = x2 – 2x - 8⇔ 0 = x2 – 2x - 8⇔ x - 4 x + 2 = 0⇔ x = 4 atau x = -2. ∴ Titik potong sumbu x adalah -2, 0 dan 4, 0. Titik potong sumbu y dengan syarat x = 0. y = x2 – 2x - 8⇔ y = 0 – 0 – 8⇔ y = -8 ∴ Titik potong sumbu y adalah 0, -8. Titik balik xp=−b2a=−−221=1yp=−b2−4ac4a=−−22−41−841=−364=−9 ∴ Titik baliknya adalah 1, -9. Hubungkan titik-titik yang diperoleh pada bidang Cartesius, sehingga terbentuk grafik y = x2 – 2x - 8 seperti di bawah ini. Contoh 3 Gambarkan grafik fungsi f x → -x2 – 2 dengan domain adalah {-2, -1, 0, 1, 2} dan rangenya adalah himpunan bilangan real. Penyelesaian Diketahuif x = -x2 – 2domain f x = {-2, -1, 0, 1, 2} Range daerah hasil dari f x dapat ditentukan dengan mensubstitusikan anggota domain ke f x. f x = -x2 – 2f -2 = -22 – 2 = -6f -1 = -12 – 2 = -3f 0 = -02 – 2 = -2f 1 = -12 – 2 = -3f 2 = -22 – 2 = -6 Pasangan berurutan dari domain dan range f x adalah-2, -6, -1, -3, 0, -2, 1, -3, 2, -6 Gambarkan pasangan berurutan tersebut dalam bentuk titik noktah pada bidang Cartesius kemudian hubungkan, sehingga membentuk grafik y = x2 – 2x - 8 seperti di bawah ini.
Untukmemahami fungsi trigonometri secara umum, terlebih dahulu kita akan membahas grafik fungsi trigonometri dasar, yaitu grafik fungsi y = sin x, y = cos x dan y = tan x. Untuk lebih jelasnya ikutilah contoh soal berikut ini : 03. Lukislah fungsi trigonometri f(x) = dalam interval 0 o < x ≤ 360 o Jawab. 04. Lukislah fungsi
Grafik Fungsi Kuadrat Blog Koma - Grafik fungsi kuadrat $ fx = ax^2+bx+c \, $ secara umum berbentuk lintasan parabola bisa menghadap ke atas, ke bawah, ke kanan, dan ke kiri seperti gambar berikut ini. Hal unik yang perlu kita ketahui untuk sketsa dan menggambar grafik fungsi kuadrat yaitu grafik fungsi kuadrat berupa parabola dan arah atau hadap dari parabolanya tergantung dari nilai $ a \, $ nya. Nilai $ a \, $ dari fungsi kuadrat ini juga akan membantu kita untuk mengetahui jenis titik puncak dari grafik fungsi kuadratnya. Menggambar grafik fungsi kuadrat ini sangat penting karena biasanya ada kaitannya dengan matri lain pada matematika yaitu "menentukan luas dan volume benda putar menggunakan integral" suatu daerah. Tentu sobat bertanya, bagaimana cara menggambar grafik fungsi kuadrat ini? sebenarnya mudah dalam menggambar grafik fungsi kuadrat, ada dua cara yaitu dengan sketsa biasa dan dengan teknik menggeser. Sketsa langsung grafik fungsi kuadrat digunakan ketika parabolanya memiliki titik potong terhadap sumbu X. Sementara teknik menggeser grafik fungsi kuadrat kita gunakan ketika grafiknya tidak memeiliki titik potong pada sumbu X. Sebenarnya teknik menggesaer ini sifatnya lebih umum, berlaku untuk semua jenis grafik baik ada titik potong atau tidak ada titik potong pada sumbu X. Berikut penjelasan tentang sketsa grafik fungsi kuadrat. Sketsa Grafik Fungsi Kuadrat FK Langkah-langkah sketsa grafik fungsi kuadrat $ fx = ax^2 + bx + c $ 1. Menentukan titik potong tipot pada sumbu X jika ada dengan cara mensubstitusi $ y = 0 \, $ , sehingga diperoleh akar-akar dari $ ax^2+bx+c = 0 \, $ yaitu $ x_1 \, $ dan $ x_2 \, $ . Artinya tipotnya $ x_1,0 \, $ dan $ x_2,0 $ . 2. Menentukan titik potong tipot pada sumbu Y dengan cara mensubstitusi $ x = 0 \, $ , sehingga diperoleh $ y = c \, $ . Artinya tipotnya $ 0,c $ 3. Menentukan titik balik/puncak $ x_p,y_p $ Rumus $ x_p = \frac{-b}{2a} \, $ dan $ y_p = \frac{D}{-4a} \, $ atau $ y_p = fx_p= f\left \frac{-b}{2a} \right $ Sehingga titik balik/puncaknya $ x_p,y_p= \left \frac{-b}{2a} , \frac{D}{-4a} \right \, $ atau $ x_p,y_p= \left \frac{-b}{2a} , f\left \frac{-b}{2a} \right \right $ 4. Menentukan sembarang titik bantuan lainnya agar menggambar lebih mudah, dengan cara memilih beberapa nilai $ x \, $ dan disubstitusikan ke FK. dengan $ D = b^2 - 4ac \, D \, $ disebut nilai Diskriminan seperti pada persamaan kuadrat. Sumbu Simetri pada grafik fungsi kuadrat Garis $ x = x_p \, $ disebut sumbu simetri yaitu garis yang membagi parabola menjadi dua bagian sama besar ruas kanan dan ruas kiri dari sumbu simetri atau ruas atas dan bawah dari sumu simetri. Lihat gambar berikut Untuk lebih jelas tentang cara sketsa grafik fungsi kuadrat, silahkan pelajari contoh berikut ini. Contoh Gambarlah grafik dari fungsi kuadrat $ y = x^2-2x-15 \, $ ? Penyelesaian $\spadesuit \, $ FK $ y = x^2-2x-15 \rightarrow a= 1 , \, b= -2, \, c = -15 $ $\spadesuit \, $ Langkah-langkah sketsa grafik fk 1. Tipot sumbu X, substitusi $ y = 0 $ $ x^2-2x-15 = 0 \rightarrow x+3x-5=0 \rightarrow x = -3 \vee x = 5 $ Tipot sumbu X $ -3,0 \, $ dan $ 5,0 $ 2. Tipot sumbu Y , substitusi $ x = 0 $ $ y = x^2-2x-15 \rightarrow y = 0^ \rightarrow y = -5 $ Tipot sumbu Y $ 0,-15 $ 3. Titik balik/puncaknya $ x_p,y_p $ $ x_p = \frac{-b}{2a} = \frac{-2}{ = 1 $ $ y_p = \frac{D}{-4a} = \frac{b^2-4ac}{-4a} = \frac{-2^ = -16 $ atau cara lain menentukan nilai $ y_p \, $ $ y_p = fx_p = f1 = 1^ = -16 $ titik balik/puncaknya $ x_p , y_p = 1, -16 $ Persamaan sumbu simetrinya $ x = x_p \rightarrow x = 1 $ Berikut gambar dari langkah-langkah di atas. Keterangan gambarnya Nilai Maksimum dan minimum fungsi kuadrat Untuk nilai maksimum dan minimum suatu fungsi kuadrat $ y = ax^2+bx+c \, $ bisa dilihat dari posisi titik balik yang bergantung dari nilai $ a \, $ nya. *. Jika nilai $ a \, $ positif $a > 0 $ , maka kurva akan mengahdap ke atas yang artinya titik baliknya ada di bawah. Pada keadaan ini akan diperoleh nilai minimum. *. Jika nilai $ a \, $ negatif $a < 0 $ , maka kurva akan mengahdap ke bawah yang artinya titik baliknya ada di atas. Pada keadaan ini akan diperoleh nilai maksimum. Nilai maksimum atau minimum ini akan sangat berguna pada soal-soal cerita yang berkaitan dengan nilai maksimum dan minimum, materi ini akan diperdalam pada penerapan fungsi kuadrat . Dari penjelasan dan konsep serta contoh menggambar grafik fungsi kuadrat dengan teknik sketsa langsung, langkah-langkah yang harus kita lakukan yaitu menentukan titik potong grafik pada sumbu-sumbu baik sumbu X maupun sumbu Y, menentukan titik puncak grafik, dan menentukan beberapa titik lain agar grafiknya lebih baik. Namun untuk penerapan dalam integral nantinya, menggambar grafik fungsi kuadrat tidak perlu sedetail ini, cukup kita mencari titik potong sumbu X dan nilai $ a \, $ saja untuk arah atau hadap dari grafiknya.
FungsiKuadrat. Fungsi kuadrat merupakan aturan yang memasangkan semua anggota daerah asal tepat satu ke daerah kawan dengan pangkat pada variabel tertingginya adalah dua. Baca juga: Cara Menyusun Persamaan Kuadrat. Bentuk umum dari fungsi kuadrat yaitu f (x) = ax 2 +bx+c, dengan keterangan sebagai berikut. Keterangan: Fungsi kuadrat adalah suatu persamaan dari variabel yang mempunyai pangkat tertinggi dua. Fungsi ini berkaitan dengan persamaan kuadrat. Bentuk umum persamaan kuadrat adalah Sedangkan bentuk umum dari fungsi kuadrat adalah Dengan a, b, merupakan koefisien, dan c adalah konstanta, serta . Fungsi kuadrat fx dapat juga ditulis dalam bentuk y atau Dengan x adalah variable bebas dan y adalah variable terikat. Sehingga nilai y tergantung pada nilai x, dan nilai-nilai x tergantung pada area yang ditetapkan. Nilai y diperoleh dengan memasukan nilai-nilai x kedalam fungsi. Grafik Fungsi Kuadrat Fungsi kuadrat dapat digambarkan ke dalam koordinat kartesius sehingga diperoleh suatu grafik fungsi kuadrat. Sumbu x adalah domain dan sumbu y adalah kodomain. Grafik dari fungsi kuadrat berbentuk seperti parabola sehingga sering disebut grafik parabola. Grafik dapat dibuat dengan memasukan nilai x pada interval tertentu sehingga didapat nilai y. Kemudian pasangan nilai x, y tersebut menjadi koordinat dari yang dilewati suatu grafik. Sebagai contoh, grafik dari fungsi adalah Jenis grafik fungsi kuadrat lain 1. Grafik fungsi Jika pada fungsi memiliki nilai b dan c sama dengan nol, maka fungsi kuadratnya Pada grafik fungsi ini akan selalu memiliki garis simetris pada x = 0 dan titik puncak y = 0. Sebagai contoh , maka grafiknya adalah 2. Grafik fungsi Jika pada fungsi memiliki nilai b = 0, maka fungsi kuadratnya sama dengan Pada fungsi ini grafik akan memiliki kesamaan dengan grafik fungsi kuadrat yaitu selalu memiliki garis simetris pada x = 0. Namun, titik puncaknya sama dengan nilai c atau . Sebagai contoh = + 2, maka grafiknya adalah 3. Grafik fungsi Grafik ini merupakan hasil perubahan bentuk dari . Pada fungsi kuadrat ini grafik akan memiliki titik puncak x, y sama dengan h, k. Hubungan antara a, b, dan c dengan h, k sebagai berikut Sifat-sifat Grafik Fungsi Kuadrat a. Grafik terbuka Grafik dapat terbuka ke atas atau ke bawah. Sifat ini ditentukan oleh nilai a. Jika maka grafik terbuka ke atas, jika maka grafik terbuka kebawah. b. Titik Puncak Grafik kuadrat mempunyai titik puncak atau titik balik. Jika grafik terbuka kebawah, maka titik puncak adalah titik maksimum. Jika grafik terbuka keatas maka, titik puncak adalah titik minimum. c. Sumbu Simetri Sumbu simetri membagi grafik kuadrat menjadi 2 bagian sehingga tepat berada di titik puncak. Karena itu, letaknya pada grafik berada pada d. Titik potong sumbu y Grafik memotong sumbu y di x = 0. Jika nilai x = 0 disubstitusikan ke dalam fungsi, diperoleh y = c. Maka titik potong berada di 0, c. e. Titik potong sumbu x Grafik kuadrat akan memotong sumbu x di y = 0, sehingga membentuk persamaan Akar-akar dari persamaan tersebut adalah absis dari titik potong. Oleh karena itu, nilai diskriminan D berpengaruh pada keberadaan titik potong sumbu x sebagai berikut Jika digambarkan, sebagai berikut Menyusun Persamaan Grafik Fungsi Kuadrat Persamaan grafik fungsi kuadrat dapat dibentuk dengan syarat Diketahui tiga titik koordinat x, y yang dilalui oleh grafik Ketiga koordinat tersebut, masing-masing disubstitusikan kedalam persamaan grafik Sehingga didapat tiga persamaan berbeda yang saling memiliki variabel a, b dan c. Selanjutnya dilakukan teknik eliminasi aljabar untuk memperoleh nilai dari a, b dan c. Setelah diperoleh nilai-nilai itu, kemudian masing-masing disubstitusikan ke dalam persamaan sebagai koefisien. Diketahui titik potong dengan sumbu x dan satu titik yang dilalui Jika titik potong sumbu x adalah dan , maka rumus fungsi kuadrat nya adalah Dengan nilai a didapat dari mensubstitusikan titik x, y yang dilalui. Diketahui titik puncaknya dan satu titik yang dilalui Jika titik puncaknya adalah , maka rumus fungsi kuadrat nya adalah Dengan nilai a didapat dari mensubstitusikan titik x, y yang dilalui. Contoh Soal Fungsi Kuadrat dan Pembahasan Contoh Soal 1 Jika grafik mempunyai titik puncak 1, 2, tentukan nilai a dan b. UMPTN ’92 Pembahasan 1 Gunakan rumus sebagai nilai x titik puncak, sehingga Substitusi titik puncak 1, 2 ke dalam persamaan diperoleh Dari persamaan baru, substitusikan nilai ,maka Contoh Soal 2 Jika fungsi mempunyai sumbu simetri x = 3, tentukan nilai maksimumnya. UMPTN 00 Pembahasan Sumbu simetri berada di x titik puncak, sehingga Sehingga fungsi y menjadi Nilai maksimumnya Soal 3 Tentukan grafik yang melintasi -1, 3 dan titik minimumnya sama dengan puncak grafik . UMPTN 00 Pembahasan Titik puncak adalah Substitusikan nilai dan dalam persamaan Maka grafik fungsi kuadrat yang dicari adalah Kontributor Alwin Mulyanto, Alumni Teknik Sipil FT UI Materi lainnya Trigonometri Vektor SPLDV & SPLTV
\n \n \n \n\n gambarlah grafik fungsi kuadrat berikut
Gambarlahgrafik dari fungsi-fungsi berikut beserta inversnya dalam satu bidang koordinat! f(x) = x² + 4x – 5. Bahasan dan Jawaban. f(x) = x² + 4x – 5 Maka grafiknya sebagai berikut: Baca juga: Suatu perusahaan memiliki karyawan yang baik sebanyak 20% Pada komposisi fungsi berlaku sifat asosiatif
Kelas 9 SMPFUNGSI KUADRATFungsi kuadrat dengan tabel, grafik, dan persamaanFungsi kuadrat dengan tabel, grafik, dan persamaanFUNGSI KUADRATALJABARMatematikaRekomendasi video solusi lainnya0353Diketahui garis dengan persamaan x + 4y + 3 = 0 dan 2x - ...0247Grafik dari y = 4x - x^2 paling tepat digambar sebagai...0404Jika f adalah fungsi kuadrat yang grafiknya melalui titik...0349Grafik fungsi kuadrat yang memotong sumbu X di titik -4,...Teks videosoal yaitu Gambarkan grafik fungsi kuadrat berikut dimana fungsi kuadratnya adalah x kuadrat min 5 x + 6 sebelum menggambar grafik di sini kita akan menganalisis karakteristik dari grafik fungsi tersebut perhatikan bahwa pada fungsi tersebut nilai a-nya atau koefisien dari X kuadrat maka di sini nilai a-nya artinya lebih dari nol fungsi kuadrat yang nilainya lebih dari 0, maka grafiknya akan terbuka ke atas untuk langkah selanjutnya kita akan mencari nilai diskriminan yaitu b kuadrat min 4 AC pada fungsi tersebut nilai b nya karena koefisien dari X2 nilai C adalah 6 sehingga Min 5 dikuadratkan Min 4 dikalikan a nya 1 dan C nya adalah6 = 25 min 24 = 1 sehingga dari sinilah maka artinya d-nya atau diskriminannya lebih dari nol fungsi kuadrat yang nilai diskriminannya lebih dari nol maka grafiknya akan memotong sumbu x di dua Titik maka disini kita akan mencari titik perpotongan tersebut yang berada pada sumbu x di sini artinya adalah titik potong sumbu x maka Y = X kuadrat min 5 x + 60 = x kuadrat min 5 x + 6 akan kita faktorkan menjadi X min 3 dikalikan dengan X min 2 sehingga untuk nilaiMasing-masing adalah 3 atau x = 2 maka titik potong terhadap sumbu x nya adalah 2,0 dan 30. Selanjutnya kita akan mencari titik potong terhadap sumbu y maka artinya nilai x nya adalah 0 sehingga Y = X kuadrat min 5 x + 6 maka y = 0 kuadrat min 5 x 06 sehingga nilainya sama dengan 6 dari sinilah titik potong terhadap sumbu y adalah a 0,6 selanjutnya kita akan mencari titik puncak grafik tersebut didapatkan dari min b per 2 A negatif diskriminan perempata dimana nilai P nya adalah Min 5 maka Min dari negatif 5 adalahper 2 dikalikan a nya adalah 1 koma negatif diskriminan maka negatif 1 per 4 dikalikan a nya adalah 1 sehingga 5 per 2 koma 1 per 4 akan kita ubah dalam bentuk desimal maka menjadi 2,5 kemudian Maka selanjutnya kita akan menggambarkan titik-titik tersebut ke dalam diagram untuk titik potong terhadap sumbu x nya adalah 2,02 pada sumbu x 0 pada sumbu y dan 3,0 selanjutnya titik potong terhadap sumbu y adalah 0,60 pada sumbu x dan 6 pada sumbu y kemudian titik puncaknya adalah 2,5 ini adalah titik 2,5koma Min 0,205 maka ini adalah titik Min 0,25 selanjutnya pertemuan titik tersebut berada di sini untuk membentuk suatu grafik maka kita akan menggabungkan titik-titik tersebut dimulai dari titik yang memotong sumbu y kemudian memotong sumbu x lalu melalui pusat dan memotong sumbu x lagi ternyata benar bahwa grafik tersebut memotong sumbu x di dua titik yaitu 2 dan dan terbuka ke atas sampai jumpa di Pertanyaan selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul Sj1za.
  • u3qwzg3eoe.pages.dev/155
  • u3qwzg3eoe.pages.dev/478
  • u3qwzg3eoe.pages.dev/562
  • u3qwzg3eoe.pages.dev/528
  • u3qwzg3eoe.pages.dev/556
  • u3qwzg3eoe.pages.dev/496
  • u3qwzg3eoe.pages.dev/167
  • u3qwzg3eoe.pages.dev/356
  • gambarlah grafik fungsi kuadrat berikut